
HESSD
8, 4099–4120, 2011

Generalized
analytical solution for
advection-dispersion

equation

J.-S. Chen and C.-W. Liu

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Hydrol. Earth Syst. Sci. Discuss., 8, 4099–4120, 2011
www.hydrol-earth-syst-sci-discuss.net/8/4099/2011/
doi:10.5194/hessd-8-4099-2011
© Author(s) 2011. CC Attribution 3.0 License.

Hydrology and
Earth System

Sciences
Discussions

This discussion paper is/has been under review for the journal Hydrology and Earth
System Sciences (HESS). Please refer to the corresponding final paper in HESS
if available.

Generalized analytical solution for
advection-dispersion equation in finite
spatial domain with arbitrary
time-dependent inlet boundary condition
J.-S. Chen1 and C.-W. Liu2

1Graduate Institute of Applied Geology, National Central University, Jhongli City,
Taoyuan County, 32001, Taiwan
2Departmnent of Bioenvironmental Systems Engineering, National Taiwan University,
Taipei, 10617, Taiwan

Received: 23 March 2011 – Accepted: 12 April 2011 – Published: 26 April 2011

Correspondence to: J.-S. Chen (jschen@geo.ncu.edu.tw)

Published by Copernicus Publications on behalf of the European Geosciences Union.

4099

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/8/4099/2011/hessd-8-4099-2011-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/8/4099/2011/hessd-8-4099-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
8, 4099–4120, 2011

Generalized
analytical solution for
advection-dispersion

equation

J.-S. Chen and C.-W. Liu

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Abstract

This study presents a generalized analytical solution for one-dimensional solute trans-
port in finite spatial domain subject to arbitrary time-dependent inlet boundary condi-
tion. The governing equation includes terms accounting for advection, hydrodynamic
dispersion, linear equilibrium sorption and first order decay processes. The general-5

ized analytical solution is derived by using the Laplace transform with respect to time
and the generalized integral transform technique with respect to the spatial coordinate.
Several special cases are presented and compared to illustrate the robustness of the
derived generalized analytical solution. Result shows an excellent agreement. The an-
alytical solutions of the special cases derived in this study have practical applications.10

Moreover, the derived generalized solution which consists an integral representation
is evaluated by the numerical integration to extend its usage. The developed gener-
alized solution offers a convenient tool for further development of analytical solution
of specified time-dependent inlet boundary conditions or numerical evaluation of the
concentration field for arbitrary time-dependent inlet boundary problem.15

1 Introduction

Solute transport in subsurface is generally described with the advection-dispersion
equation (ADE). Analytical solutions for one-, two- and three-dimensional ADEs have
been reported in literature for predicting the transport of various contaminants in the
semi-finite or infinite spatial domain (e.g., van Genuchten and Alves, 1982; Batu, 1989,20

1993, 1996; Leij et al., 1991, 1993; Park and Zhan, 2001; Zhan et al., 2009). The num-
ber of analytical solutions for finite spatial domain is limited compared with semi-finite
or infinite spatial domain solutions. The reason for the lack of progress in develop-
ing analytical solutions for finite spatial domain is that the solution procedures tend
to be relatively cumbersome, requiring complicated or difficult mathematical derivation25

and manipulations (Pérez Guerrero et al., 2009a,b). In groundwater hydrology, the
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Laplace transform technique has been widely applied to develop the analytical solu-
tions to advection-dispersion equation. The process of applying Laplace transform to
obtain analytical solutions for finite spatial domain in the Laplace space is not com-
plicated, whereas analytically inverting the analytical solution from the Laplace space
back to the original time domain is much more difficult. The inverse Laplace transform5

is mostly performed based on the complex functions and residual theory, thus limiting
the numbers and types of the analytical solutions for finite spatial domain. Accordingly,
some researchers used the classic or generalized integral transform technique to de-
velop the analytical solution for solute transport in finite spatial domain. For instance,
the analytical solutions for one-dimensional advection-dispersion transport in finite spa-10

tial domain subject to first- and third-type inlet boundary conditions were presented by
Clearly and Adrian (1973), Selim and Mansell (1976), respectively. van Genuchten
and Alves (1982) presented the analytical solution for finite spatial domain associated
with exponentially decaying time-dependent inlet boundary condition. Recently, Pérez
Guerrero et al. (2009a) presented a general integral transform technique which pro-15

vides a systematic, efficient, and straightforward approach for deriving the analytical
solution of the solute transport within a finite spatial domain. Prior to applying general
integral transform technique Pérez Guerrero et al. (2009a) suggested that a change-
of-variable is carried out to homogenize the inhomogeneous boundary condition using
a filter function due to that solutions of inhomogeneous problems based on eigenfunc-20

tion expansions may converge slowly or even exhibit anomalous behavior, especially
in the vicinity of the boundaries as noted by Ozisik (1980) and Cotta and Mikhailov
(1997). For the case of the transport in a finite spatial domain associated with time-
invariant boundary conditions, the filter function for homogenizing the inhomogeneous
boundary condition can be easily derived. However, the procedure for obtaining the25

filter function for finite spatial domain with time-dependent boundary condition is much
more complicated because of the need to define the filter function over both the time
and spatial domain. Accordingly, the application of generalized integral technique to
obtain the analytical solution for ADE in finite spatial domain is limited to time-invariant
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constant and time-dependent exponentially decaying inlet boundary condition (Pérez
Guerrero et al., 2009a,b, 2010; Pérez Guerrero and Skaggs, 2010).

As the authors aware, analytical solution for finite spatial domain associated with
arbitrary time-dependent inlet boundary condition has not been reported in literature
yet. In many instances the solute transport problems may involve the various types5

of time-dependent inlet boundary conditions. For example, naturally occurring iso-
topes into a system from a flow through-lake can be dependent upon natural, cyclic,
water-quality variations or liquid waste disposal operates on a periodic cycle. Addition-
ally, the tracer test may be performed by adopting an instantaneous slug input. The
solution for arbitrary time-dependent input function should be useful for describing so-10

lute transport in a natural or human-made system in which the input at a boundary is
a function of time (Logan and Zlotnik, 1995, 1996). In the present study we attempt
to derive the generalized analytical solution for ADE in finite spatial domain subject to
arbitrary time-dependent inlet boundary condition. The Laplace transform in combi-
nation with generalized integral transform is used to obtain the generalized analytical15

solution. Laplace transform is applied to convert the time-dependent inhomogeneous
boundary condition into non-time-dependent boundary condition and the constraint in
obtaining the filter function for transport in finite special domain with transient bound-
ary condition can be overcome. The generalized analytical solution is applied to derive
some specific analytical solutions to demonstrate its practical applications. Moreover,20

the generalized analytical solution which consists of a definite integral expression is
evaluated by means of numerical integration technique to extend its applicability for
describing solute transport associated with arbitrary time-dependent inlet boundary
condition.

2 Governing equations25

Herein we consider a problem of one-dimensional advective-dispersive solute transport
in finite spatial domain subject to arbitrary time-dependent inlet boundary condition.
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The solute transport equation incorporates terms accounting for advection, dispersion,
linear equilibrium sorption, and first-order decay processes. The governing equation
for the solute transport problem is expressed as

DL
∂2C
∂x2

−V ∂C
∂x

−kC=R
∂C
∂t

(1)

where C(x,t) is the solute concentration; x is the spatial coordinate; t is time; V stands5

for the averaged steady-state pore water velocity; DL represents the longitudinal dis-
persion coefficient; R is the retardation coefficient of the solute and k is first-order
decay rate constant.

The initial and boundary conditions considered herein are

C(x,t=0)=0 0≤x≤L (2)10

V C(x=0,t)−DL
∂C(x=0,t)

∂x
= V f (t) t >0 (3)

∂C(x=L,t)
∂x

=0 t >0 (4)

where L is the length of the finite spatial domain, f (t) represents the arbitrary expres-
sion input function applied at x=0 which will be specified later.

Inserting the following dimensionless variables, xD = x
L and tD = V t

L into Eqs. (1)–(4)15

yields the following governing equation and its auxiliary and boundary conditions in
dimensionless form as

1
P eL

∂2C

∂x2
D

− ∂C
∂xD

−kDC=R
∂C
∂tD

(5)

C(xD,tD =0)=0 0≤xD ≤1 (6)

C(x=0,tD)− 1
P eL

∂C(xD =0,tD)

∂xD
= f (

L
V
tD) tD >0 (7)20
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∂C(xD =1,tD)

∂xD
=0 tD >0 (8)

where P eL =
V L
DL

and kD = kL
V .

3 Derivation of the generalized analytical solution

The analytical solution to Eq. (5) subject to Eqs. (6)–(8) is derived using the Laplace
transform with respect to tD and the general integral transform technique with respect5

to xD.
First, the Laplace transform is carried out on Eq. (5) with the help of Eq. (6) and its

auxiliary boundary conditions Eqs. (7) and (8) with respect to tD. After the Laplace
transform procedure the governing equation (Eq. 5) and boundary conditions (Eqs. 7–
8) become10

1
P eL

d2CL

dx2
D

−
dCL

dxD
− (kD+s)CL =0 (9)

CL(xD =0,s)− 1
P eL

dCL(xD =0,s)

dxD
= f (s) (10)

dCL(xD =1,s)

dxD
=0 (11)

where s denotes the Laplace transform parameter and CL(xD,s) and f (s) represent
the Laplace transforms of C(xD,tD) and f (LV tD), respectively, which is defined by the15

following equations

CL(xD,s)=L[C(xD,tD)]=

∞∫
0

C(xD,tD)e−stDdtD (12)
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f (s)=L
[
f
(
L
V
tD

)]
=

∞∫
0

f
(
L
V
tD

)
e−stDdtD (13)

The general integral transform technique is then adopted to analytically solve the
Eq. (9) and its auxiliary initial and boundary conditions Eqs. (10) and (11). Further
information regarding the use of the generalized integral transform can be found in
Pérez Guerreo et al. (2009a,b; 2010). Prior to applying general integral transform5

technique a change-of-variable is carried out to homogenize the boundary condition
Eq. (12) and to covert Eq. (9) into a purely diffusive type differential equation. This
approach was demonstrated previously by Pérez Guerreo et al. (2009a). Inserting

the variable change CV(xD,s)=
[
CL(xD,s)− f (s)

]
exp
(
−P eL

2 xD

)
, Eqs. (9)–(11) can be

written in terms of the CV(xD,s) as10

1
P eL

d2CV

dx2
D

−
(
P eL

4
+kD+s

)
CV =exp

(
−
P eL

2
xD

)
(kD+s)f (s) (14)

dCV(xD =0,s)

dxD
−
P eL

2
CV(xD =0,s)=0 (15)

dCV(xD =1,s)

dxD
+
P eL

2
CV(xD =1,s)=0 (16)

Following the procedures of the generalized integral transform, the eigenfunction is
determined from the following Sturm-Liouville problem with the same kinds of boundary15

conditions as specified for CV(xD,s):

d2K (xD)

dx2
D

+ψ2K (xD)=0 (17)
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dK (xD =0)

dxD
−
P eL

2
K (xD =0)=0 (18)

dK (xD =1)

dxD
+
P eL

2
K (xD =1)=0 (19)

Solving for Eqs. (17)–(19), we have the following normalized eigenfunction

K (ψm,zD)=

√
2
[
ψmcos(ψmzD)+ P eL

2 sin(ψmzD)
]

(
P e2

L
4 + P eL

2 +ψ2
m

) 1
2

(20)

where ψm is the eigenvalue determined from the following equation:5

ψmcotψ−
ψ2
m

P eL
+
P eL

4
=0 (21)

The generalized integral transform pairs are readily defined as

CV(ψm,s)=

1∫
0

K (ψm,xD)CV(xD,s)dxD (22a)

CV(xD,s)=
∞∑
m=1

K (ψm,xD)CG(ψm,s) (22b)

Making use of the above generalized integral transform on Eq. (14) and solving for10

CV(xD,s) , one obtains

CV(xD,s)=
−
√

2ψmP eL(
P e2

L
4 + P eL

2 +ψ2
m

) 1
2
(
P e2

L
4 +ψ2

m

) ·
s+kD

s+ ψ2
m

P eL
+ P eL

4 +kD+s
f (s) (23)
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The analytical solution in original domain can readily be obtained by successively ap-
plications of the general integral transform inversion (Eq. 22b), change of variable, as
well as the Laplace transform inversion. The inverse Laplace transform is achieved us-
ing convolution theorem. Following the aforementioned procedures, the final analytical
solution can be expressed in dimensionless form as5

C(xD,tD)= f
(
L
V
tD

)
−

∞∑
m=1

exp
(
P eL

2
xD

)
E (ψm,xD)F (tD) (24)

where E (ψm,xD)=
2P eLψm

[
ψmcos(ψmxD)+

P eL
2 sin(ψmxD)

]
(
P e2

L
4 +

P eL
2 +ψ2

m

)(
P e2

L
4 +ψ2

m

) ,

F (tD)= f
(
L
V
tD

)
−
(
ψ2
m

P eL
+
P eL

4

)
e
−
(
ψ2
m

P eL
+
P eL

4 +kD

)
tD
tD∫
0

f
(
L
V
τ
)
e

(
ψ2
m

P eL
+
P eL

4 +kD

)
τ
dτ

4 Results and discussion

4.1 Development of specific solutions using the generalized analytical solution10

The generalized analytical solution (Eq. 24) provides useful foundation for deriving
specific analytical solutions having practical applications. Solution for specified time-
dependent input function can be readily derived by substituting f

(L
V tD
)

into the integral
expression of Eq. (24). In this study three specific analytical solutions for constant,
exponentially decaying and sinusoidally periodic time-dependent input functions are15

derived using integral expression of Eq. (24). Table 1 summarizes three specified
time-dependent input functions and their corresponding analytical solutions. The so-
lutions for constant and exponentially decaying input functions have been previously
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presented in literature (van Genuchten and Alves, 1982). The solutions for constant
and exponential decaying time-dependent input functions in Table 1 are the same as
those reported in literature.

The solution for a finite spatial domain associated with sinusoidally periodic bound-
ary condition has not been presented in literature. The specific analytical solution for5

sinusoidally periodic input function is in the form of the sum of the infinite series ex-
pansion and can be straightforwardly evaluated. Generally, the number of the terms
in the infinite series expansion plays a key role in determining the accurate result. Ac-
cordingly, we are interesting to examine how many terms are required to numerically
determine the accurate solution. The parameter values for the numerical results for10

sinusoidal periodic input function are summarized in Table 2. Table 3 illustrates the
convergence of the numerical evaluation of analytical solution for the sinusoidally pe-
riodic input. The required number of terms drastically increases with increasing P eL.
Numbers of terms 10, 60 and 1800 can achieve convergence to 4 decimal places for
P eL equal to 1, 10 and 50. After determining the number of terms for solution conver-15

gence we compare the developed periodic analytical solution with the corresponding
numerical solution to examine the correctness of the mathematical derivations and
manipulations in the solution development for sinusoidal periodic input function. The
numerical solution is generated using the Laplace transform finite difference (LTFD)
technique proposed by Moridis and Reddel (1991). The LTFD technique has several20

advantages over the conventional time-marching finite difference method. The input
parameter values are the same as those in Table 2. Figure 2 depicts the breakthrough
curves observed at x =1 m obtained from the specific analytical solution and the cor-
responding numerical solution. As expected, the developed analytical solutions agree
well with the corresponding numerical solutions.25

4.2 Effect of D and k on periodic solute transport

After validating the analytical solution for sinusoidal periodic input function, we use this
analytical solution to carry out the parametric investigation in which the effect ofD and k
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on periodic solute transport are illustrated and discussed. Each of the two parameters,
namely D and k is parametrically varied, respectively, while the other parameters are
kept constant. It is observed in Fig. 2 that increasing D will decrease the amplitude of
the periodic concentration wave due to larger spreading of the solute mass. In Fig. 3,
a lower concentration is observed at the crest and trough of concentration wave for5

large k.

4.3 Evaluation of the generalized analytical solution using numerical
integration

In Sect. 4.1 we derive some specific analytical solution using the developed gener-
alized analytical solution (Eq. 24) by substituting the specified time-dependent input10

function into the integral expression. However, in many instances the development of
the specific analytical solution is difficult or prohibited, therefore, the numerical integra-
tion method need to be used to evaluate the result of Eq. (24). The reason for using
numerical integration method may be due to that the anti-derivative for the specified in-
put function is impossible or difficult to find or the input function is known only at certain15

points, such as obtained by sampling. The integral in Eq. (24) is numerically evalu-
ated by means of the Gaussian integration procedure using 30–61 quadrature points.
A FORTRAN subroutine DQDAG/QDAG (Visual Numerics, Inc., 1997) based on the
Gaussian rule, is readily employed to perform the numerical integration. The accuracy
of the evaluated results of Eq. (24) using numerical integration is compared with two20

specific analytical solutions for exponential decaying and sinusoidal periodic input func-
tions. Figsures 4 and 5 show the results from the numerical integration of Eq. (24) and
the two specific analytical solutions for exponentially decaying and sinusoidally periodic
input functions. The applicability of the Eq. (24) is illustrated with excellent agreements
between the results from numerical integration of Eq. (24) and the specific analytical25

solutions for both cases.
From above results we can conclude that the developed generalized analytical solu-

tion serves as a useful tool for development of the analytical solution for some specified
4109
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time-dependent input functions or numerical evaluation of concentration distribution for
arbitrary time-dependent input function.

5 Conclusions

This study derives a generalized analytical solution for one-dimensional advective-
dispersive transport in finite spatial domain subject to arbitrary dependent inlet bound-5

ary condition. The solution procedures consist of taking Laplace transform with respect
to time and generalized integral transform with respect to spatial coordinate. Three
simple time-dependent inlet conditions including constant, exponentially decaying and
sinusoidally periodic input functions are considered to demonstrate the applicability
of the generalized analytical solution for development of the specific analytical solu-10

tion for some specified input function. Specifically, parametric analysis is performed to
illustrate the salient behavior of solute transport resulting from a periodic input func-
tion. Moreover, the generalized solution which consists of an integral representation
is also evaluated by means of the numerical integration to extend its usage. The
generalized analytical solution provides the foundation for deriving analytical solution15

for some specified types of the time-dependent inlet condition or numerically evaluat-
ing the concentration distribution for arbitrary time-dependent inlet boundary condition.
Furthermore, the solution derived for sinusoidal periodic function will be added to the
compendium of the analytical solution to the advection-dispersion equation reported
by other researchers in literature. The analytical solution for finite spatial domain as-20

sociated with time-dependent inlet boundary condition should be particularly useful for
verification of the more comprehensive numerical models because several field numer-
ical simulations generally involve finite domain and time-dependent source boundary
conditions.
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Pérez Guerrero, J. S., Skaggs, T. H., and van Genuchten, M. Th.: Analytical solution for multi-
species contaminant transport subject to sequential first-order decay reactions in finite me-
dia, Transport Porous Med., 80, 373–357, 2009b.
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Table 1. Three time-dependent input functions and their corresponding analytical solutions.

Specified input Solution expression for specified input function f (t)

f (t)=C0 C(x,t)=C0 [B1(x)−B2(x,t)]

B1(x)=1−
∞∑
m=1

E (βm,x) kL
2

D exp
( V x

2D

)
β2
m+
( V L

2D

)2
+ kL2

D

B2(x,t)=
∞∑
m=1

E (ψm,x)
[
β2
m+
( V L

2D

)2
]
exp
(
V x
2D − kt

R − V 2t
4DR − β2

mDt
L2R

)
β2
m+
( V L

2D

)2
+ kL2

D

E (βm,x)=

2V L
D βm

[
βm
(
βmx
L

)
+ V L

2D sin
(
βmx
L

)]
[( V L

2D

)2
+ V L

2D +β2
m

][( V L
2D

)2
+β2

m

]
f (t)=Ca e

−λt C(x,t)=Ca e
−λt [F1(x)−F2(x,t)]

F1(x)=1−
∞∑
m=1

E (βm,x) (k−λR)L2

D exp
( V x

2D

)
β2
m+
( V L

2D

)2
+ (k−λR)L2

D

F2(x,t)=
∞∑
m=1

E (βm,x)
[
β2
m+
( V L

2D

)2
]
exp
(
V x
2D − kt

R +λt− V 2t
4DR − β2

mDt
L2R

)
β2
m+
( V L

2D

)2
+ (k−λR)L2

D

f (t)=Casin(ωt) C(xD,tD)=Cb
[
G1(x,t)+G2(x,t)−G3(x,t)

]
G1(x,t)=)

1−
∞∑
m=1

E (βm,x)
{[
β2
m+
( V L

2D

)2
+ kL2

D

]
kL2

D + ωRL2

D

}
exp
( V x

2D

)
[
β2
m+
( V L

2D

)2
+ kL2

D

]2
+
(
ωRL2

D

)2

sin(ωt)

G2(x,t)=
∞∑
m=1

E (βm,x)
{[
β2
m+
( V L

2D

)2
]
ωRL2

D

}
exp
( V x

2D

)
[
β2
m+
( V L

2D

)2
+ kL2

D

]2
+
(
ωRL2

D

)2
cos(ωt)

G3(x,t)=
∞∑
m=

E (βm,x)
{[
β2
m+
( V L

2D

)2
]
ωRL2

D

}
exp
(
V x
2D − kt

R +λt− V 2t
4DR − β2

mDt
L2R

)
[
β2
m+
( V L

2D

)2
+ kL2

D

]2
+
(
ωRL2

D

)2
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Table 2. Descriptive simulation conditions and transport parameters.

Parameter Value

Domain length
L (m) 1

Average velocity
V (m d−1) 1

Longitudinal dispersion coefficient
D (m2 d−1) 1

First decay rate constant
k (1 d−1) 0.01

Frequency of sinusoidal periodic input function
ω (1 d−1) 1

Decay rate constant of exponential decaying input function
λ (1 d−1) 1
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Table 3. Solution convergence for sinusoidal periodic function (1+sint).

P e=1
t N =2 N =4 N =6 N =8 N =10

0.4 0.2926 0.2913 0.2912 0.2912 0.2912
0.8 0.7214 0.7204 0.7203 0.7203 0.7203
1.2 1.1045 1.1039 1.1039 1.1039 1.1039
1.6 1.4135 1.4135 1.4135 1.4135 1.4135
2.0 1.6208 1.6213 1.6213 1.6213 1.6213
2.4 1.7066 1.7077 1.7077 1.7077 1.7077
2.8 1.6658 1.6672 1.6672 1.6673 1.6673
3.2 1.5099 1.5113 1.5114 1.5114 1.5114
3.6 1.2666 1.2679 1.2680 1.2680 1.2680
4.0 0.9764 0.9774 0.9774 0.9774 0.9774
4.4 0.6863 0.6868 0.6868 0.6868 0.6868
4.8 0.4429 0.4428 0.4428 0.4428 0.4428
5.2 0.2851 0.2844 0.2844 0.2844 0.2844
5.6 0.2381 0.2370 0.2369 0.2369 0.2369
6.0 0.3095 0.3081 0.3080 0.3080 0.3080
6.4 0.4882 0.4867 0.4866 0.4866 0.4866
6.8 0.7460 0.7447 0.7446 0.7446 0.7446
7.2 1.0422 1.0413 1.0413 1.0413 1.0412
7.6 1.3302 1.3298 1.3298 1.3298 1.3298

P e=10
t N =20 N =30 N =40 N =50 N =60
0.40 0.0214 0.0206 0.0205 0.0205 0.0205
0.80 0.4332 0.4326 0.4325 0.4325 0.4325
1.20 1.0132 1.0129 1.0128 1.0128 1.0128
1.60 1.4550 1.4550 1.4550 1.4550 1.4550
2.00 1.7427 1.7430 1.7431 1.7431 1.7431
2.40 1.8809 1.8815 1.8816 1.8816 1.8816
2.80 1.8682 1.8690 1.8691 1.8691 1.8692
3.20 1.7137 1.7145 1.7147 1.7147 1.7147
3.60 1.4440 1.4448 1.4449 1.4449 1.4449
4.00 1.1024 1.1029 1.1030 1.1030 1.1030
4.40 0.7429 0.7431 0.7432 0.7432 0.7432
4.80 0.4224 0.4223 0.4223 0.4223 0.4223
5.20 0.1915 0.1911 0.1911 0.1911 0.1911
5.60 0.0867 0.0861 0.0860 0.0860 0.0859
6.00 0.1245 0.1238 0.1236 0.1236 0.1236
6.40 0.2990 0.2982 0.2981 0.2980 0.2980
6.80 0.5826 0.5819 0.5817 0.5817 0.5817
7.20 0.9305 0.9300 0.9299 0.9299 0.9299
7.60 1.2878 1.2876 1.2875 1.2875 1.2875

P e=50
t N =400 N =800 N =1200 N =1600 N =1800
0.40 0.0069 0.0006 0.0003 0.0002 0.0002
0.80 0.1651 0.1603 0.1600 0.1600 0.1600
1.20 1.0559 1.0534 1.0532 1.0532 1.0532
1.60 1.5337 1.5338 1.5338 1.5338 1.5338
2.00 1.8046 1.8073 1.8074 1.8075 1.8075
2.40 1.9417 1.9466 1.9468 1.9469 1.9469
2.80 1.9284 1.9347 1.9351 1.9351 1.9351
3.20 1.7670 1.7737 1.7741 1.7742 1.7742
3.60 1.4830 1.4890 1.4894 1.4894 1.4894
4.00 1.1211 1.1255 1.1258 1.1258 1.1258
4.40 0.7386 0.7407 0.7408 0.7408 0.7408
4.80 0.3958 0.3952 0.3951 0.3951 0.3951
5.20 0.1468 0.1436 0.1434 0.1434 0.1434
5.60 0.0309 0.0256 0.0254 0.0253 0.0253
6.00 0.0665 0.0600 0.0596 0.0595 0.0595
6.40 0.2479 0.2411 0.2408 0.2407 0.2407
6.80 0.5465 0.5405 0.5402 0.5401 0.5401
7.20 0.9151 0.9109 0.9107 0.9106 0.9106
7.60 1.2956 1.2938 1.2937 1.2937 1.2937

N is number of terms summed.
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Fig. 1. Comparison of the breakthrough curves at x=1 m obtained from the developed specific
analytical solution for sinusoidal periodic input function (f (t)= 1+sint) and the corresponding
numerical solution.
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Fig. 2. Comparison of the breakthrough curves at x = 1 m for different D. The sinusoidal
periodic input function is f (t)= 1+sint. Parameter D is varied and other parameters are kept
constant.
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Fig. 3. Comparison of the breakthrough curves at x = 1 m for different k. The sinusoidal
periodic input function is f (t)= 1+sint. Parameter k is varied and other parameters are kept
constant.
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Fig. 4. Comparison of the breakthrough curves at x = 1 m from the numerical integration of
Eq. (24) and the specific analytical solution for exponentially decaying input function (f (t) =
exp(−t)).
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Fig. 5 Fig. 5. Comparison of the breakthrough curves at x = 1 m from the numerical integration of
Eq. (24) and the specific analytical solution for sinusoidal periodic input function (f (t)=1+sint).
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